162 research outputs found

    Modifications of the wideband FM TDRS system

    Get PDF
    The wideband FM scheme for the Tracking and Data Relay Satellite (TDRS) system is discussed. The technique achieves a spread-spectrum advantage against multipath and interference through the inclusion of a large deviation FM subcarrier. The signal also permits co-channel spread-spectrum multipath access (SSMA) on the downlink from mission spacecraft to TDRS. Each user is assigned a unique combination of carrier and subcarrier which allows the ground receiver to separate user signals with overlapping spectra. The system was modified by the addition of a low-deviation fine range tone to both the uplink and the downlink, separate from the wide-deviation subcarrier. The magnitude of the interference components due to other SSMA signals are analyzed. A carrier and subcarrier frequency plan was worked out based on the modified signal format. A configuration to accommodate 42 and 60 users is described. The inclusion of ambiguity resolving ranging sidetones is also discussed

    SNR behavior of coherent phase demodulators. Radio communications study on noise threshold reduction Final report

    Get PDF
    Signal to noise ratio analysis at outputs of three coherent phase detectors for radio noise threshold reduction stud

    Multipath signal model development

    Get PDF
    The development and use of mathematical models of signals received through the multipath environmental of a TDRS-to-user spacecraft link and vice versa are discussed. The TDRS (tracking and data relay satellite) will be in synchronous orbit. The user spacecraft will be in a low altitude orbit between 200 and 4000 km

    Simulation of the TDRS multipath environment

    Get PDF
    Design principles and implementation methods are discussed for simulating the propagation path between a tracking and data relay satellite and a mission spacecraft. The emphasis is on multipath and Doppler simulation but additive disturbances are also considered. The recommended form of the simulator is fed separately with the unmodulated carrier, the unmodulated subcarriers (or spread-spectrum components) and the data signals. The perturbations are also introduced separately; then successive modulation operations are performed. The simulator is segmented into elements that perform the various functions of direct and specular multipath, diffuse fading, Doppler shift and delay spread. Delay spreads are realized by discrete delays operating on baseband signals. Doppler simulation and ionospheric or diffuse multipath fading are applied to individual paths before or after modulation of the carrier by delayed baseband signals. Block diagrams are presented on how the different elements are combined to create a complete channel simulator

    Oxygen Generation from Carbon Dioxide for Advanced Life Support

    Get PDF
    The partial electrochemical reduction of CO2 using ceramic oxygen generators (COGs) is well known and has been studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 C (1, 2). Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation. Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA s future exploration of Mars (3). The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal is an issue. This strategy for CO2 removal in advanced life support systems employs a catalytic layer combined with a COG so that the CO2 is reduced completely to solid carbon and oxygen. First, to reduce the COG operating temperature, a thin, bilayer electrolyte was employed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, a catalytic carbon deposition layer was designed and the cathode utilized materials shown to be coke resistant. Third, a composite anode was used consisting of bismuth ruthenate (BRO) and ESB that has been shown to have high performance (4). The inset of figure 1 shows the conceptual design of the tubular COG and the rest of the figure shows schematically the test apparatus. Figure 2 shows the microstructure of a COG tube prior to testing. During testing, current is applied across the cell and initially CuO is reduced to copper metal by electrochemical pumping. Then the oxygen source becomes the CO/CO2. This presentation details the results of testing the COG
    • …
    corecore